

VISION & MISSION

THE CREATIVE INTELLIGENCE ECONOMY

Micro Certification
Creative Intelligence and Digital Futures

CREATIVE INTELLIGENCE & DIGITAL FUTURES (CIDF)

12-MONTH PROFESSIONAL DIPLOMA PROGRAM

DECT Global Institute of Creative Intelligence

Powered by GCGPS AI+CG Pipeline v1.0

Program Duration: 12 Months (Full Time)

Credit Load: 72 ECTS / 36 Local Credits

Industry Certification: GCGPS Pipelines + AI/CG Integration

Delivery Mode: Studio-Based, Project-Based, AI-Lab Enabled—Zheng He Transmedia project

Domains: AI Production • 3D & VFX • XR • Web Systems • Creative Intelligence

Creative Intelligence & Digital Futures (CIDF) Program

The Creative Intelligence & Digital Futures (CIDF) program is a **12-month, industry-aligned, AI-native diploma** that prepares learners to become the next generation of **technical artists, creative technologists, pipeline engineers, AI-native creators, and transmedia innovators**.

Built entirely on **DECT Global's GCGPS AI+CG Production Pipeline**—the world's first integrated AI-accelerated color-managed production ecosystem—the program fuses:

- **Artificial intelligence** (multimodal models, agents, automation)
- **Open-source creative technologies** (Blender, Godot, Krita, Django)
- **3D, VFX, real-time engines & XR**
- **Color science foundations** (ACES 2.0 + OCIO)
- **Pipeline governance** (AIA, PPS, metadata lineage)
- **Transmedia storytelling & cultural intelligence**
- **Software engineering for creative tools**

CIDF is not a traditional media curriculum—

it is a **modern AI+CG pipeline education system** designed for real productions, studios, and the Creative Intelligence Economy (CIE).

Program Structure — Four Progressive Phases

CIDF's 12-month structure mirrors real studio pipelines:

1. Foundation – AI, Creative Intelligence & Open Tools

Students master:

- Multimodal AI systems (T2I, T2V, T2M, TTS/STT, LLMs)
- Text-to-3D (Hunyuan3D-2, TripoSR, SAM-3D)
- Text-to-Animation (Text2Motion, BlenderMCP, DeepBlender)
- Creative Intelligence (CIE) theory
- GCGPS orientation (ACES/OCIO, AIA, PPS)
- Cultural intelligence & narrative systems

2. Production – 3D, VFX, Games, XR, AI Pipelines

Students build:

- 3D models, rigs, shaders, animation, rendering
- AI-driven VFX (ROTO, inpainting, super-res, depth FX)
- XR prototypes (VR/AR/WebXR)
- Godot real-time interactive systems
- Procedural art + environment design
- Web tools using Django and API-driven AI utilities

3. Cinematic Pipeline – Shots, Animation, Lighting & Transmedia

Students operate inside a real production ecosystem:

- Layout → Animation → FX → Lighting → Rendering → Compositing
- ACES/OCIO color-managed workflows
- AI-assisted animation (motion diffusion, facial AI, physics AI)
- Alembic/USD caches, AIA integrity metadata, PPS production forecasting
- Cross-media asset lineage, canon governance, cultural accuracy

4. Capstone & Industry Immersion – Real Projects for Real Studios

Students complete:

- A **transmedia capstone project** combining AI, CG, XR, games, and pipeline tools
- A **studio internship/industry immersion** with DECT/IAICC partners
- The **GCGPS Certification Exam**, demonstrating mastery of production standards

Core Competencies Developed

AI Production & Multimodal Creativity

- T2I (FLUX.1, Qwen-Image, HiDream-I1, SD3-Medium)
- T2V (Wan2.2, HunyuanVideo-1.5, Mochi-1, Open-Sora 2.0)
- T2M + TTS/STT (MusicGen, ACE-Step, XTTS, Whisper)
- Text-to-3D (Hunyuan3D-2, TripoSR, SAM-3D)
- Text-to-Animation (Text2Motion, DeepBlender, BlenderMCP)
- ComfyUI + ControlNet + LoRA engineering

- AI governance, model selection, ethical workflows

3D, VFX & Cinematic Tools

- Blender modeling, rigging, lighting, shading
- ACES/OCIO color-managed rendering
- FX simulation (particles, fluids, cloth)
- AI-assisted VFX (ROTO, depth, inpainting)
- Alembic/USD workflows

Real-Time Engines & Game Design

- Godot scripting, UI/UX, interactive logic
- Procedural game environments
- Animation retargeting and real-time optimization

XR / Spatial Computing

- VR/AR/WebXR prototyping
- Spatial interaction design
- Cross-platform asset optimization

Pipeline Engineering

- Python automation & tool development
- Metadata governance (AIA)
- Production planning (PPS)
- Krystal Platform integration
- Reproducible, cross-software workflows

Web & Tooling Development

- Django full-stack tools
- AI-enhanced creative web apps
- Internal production utilities

AI Agents & Knowledge Systems

- MCP (Model Context Protocol)
- RAG (Retrieval Augmented Generation) systems
- Automation of creative workflows

Professional Production Practice

- Studio dailies
- Review cycles & QC
- Cross-functional teamwork
- Presentation & documentation
- Portfolio development

CIDF graduates become **technical artists who can build, automate, direct, and innovate across multiple creative media.**

Capstone, Internship & Certification

The program spans three culminating components:

✓ Transmedia Capstone Project

A studio-grade project combining AI tools, 3D, XR, pipelines, canon consistency, and cross-media rendering.

✓ Industry Internship

Placement through DECT Global, IAICC, and partner studios:

- Animation & CG studios
- XR labs
- AI model companies
- Interactive media studios
- Cultural institutions

✓ GCGPS Certification (ACES/OCIO + AIA + PPS)

A globally recognized standard guaranteeing graduates are:

- Pipeline-ready
- Color-science literate
- AI-workflow fluent
- Cross-media production capable

CIDF's Unique Value Proposition

CIDF closes the widening gap between **traditional creative education** and **AI-accelerated studio production**.

Graduates develop a rare combination of strengths:

- **Creative + Technical + Computational + Cultural**
- **AI-native + Industry-ready + Transmedia-fluent**

These hybrid skills are in global shortage across animation, film, XR, VFX, games, and AI industries.

POWERING THE NEXT GLOBAL CREATIVE CIVILIZATION

EDUCATION

RESEARCH

PRODUCTION

CULTURE

DECT
CLOCAL

DECT Global Powering and Supporting the Micro Certification Program

Rewritten & Expanded Version (2025 Creative Intelligence Ecosystem Edition)

1. Overview — DECT Global as Strategic Partner, Infrastructure Provider & Creative Intelligence Engine

DECT Global Holdings Ltd. is an international Creative-Technology Infrastructure Group that unifies **AI, open-source ecosystems, global creative production standards, transmedia pipelines, color science, and educational networks** into a single integrated framework:

the Creative Intelligence Economy (CIE).

Through its **six interconnected divisions**:

1. **Technology & Infrastructure** (Krystal Platform, AI clusters, creative cloud)
2. **Education & Talent** (curricula, academies, micro-certifications, GCGPS certification)
3. **Production & IP** (Zheng He Universe, Marco Polo Universe, CGGE productions)
4. **Employment & Careers** (DECT-GES job network, AI job matching)
5. **Community & Media** (IAICC, OriginCG, global creative alliances)
6. **Research & Innovation** (DECT Labs, Krystal R&D, CIE research centers)

DECT Global provides universities with **the operating system of the Creative Intelligence Era** — enabling:

- modern AI pipelines
- production-grade color science
- transmedia creation
- AI-native curricula
- international employment pathways
- research collaborations
- cultural and creative diplomacy

Partnering with DECT Global allows the university to **plug into a globally operational creative ecosystem**, rather than merely teaching isolated tools or theories.

2. Strategic Role of DECT Global in Establishing the CIDF

A. Academic & Curriculum Partnership — World's First Full AI+CG+Transmedia Curriculum

Through **Krystal Institute, DECT Education Network, and the GCGPS Academy**, DECT Global provides:

- **Turnkey curriculum frameworks** including AI, creative media, digital economy, open-source pipelines, XR, ACES/OCIO color science, and transmedia IP creation
- Access to flagship programs (CITA, CIGD, CIAD, CIDF) piloted internationally
- Co-development of new **Bachelor's, Master's, and Professional Diploma programs**
- Integration of **multimodal AI models**:
 - T2I (FLUX.1, Qwen-Image, SD3-M)
 - T2V (Wan2.2, HunyuanVideo, Mochi-1, Open-Sora 2.0)
 - T2M (MusicGen, ACE-Step)
 - TTS/STT (XTTS, Whisper v3 Turbo)
 - LLMs (Llama 4, Qwen 3, DeepSeek R1/V3)
 - Text-to-3D (Hunyuan3D-2, TripoSR, SAM-3D)
 - Text-to-Animation (Text2Motion, BlenderMCP, DeepBlender)
- Full integration of **GCGPS global production pipeline standards**, ensuring worldwide recognition

Each module merges:

- Creative Intelligence
- Cultural intelligence
- AI technical fluency
- Pipeline governance (ACES/OCIO + AIA/PPS)
- Open-source interoperability
- Transmedia storytelling
- Entrepreneurial thinking

- Applied studio practice

Result:

The university delivers **industry-grade, globally recognized Creative Intelligence education** without needing to build new systems from scratch.

B. Technological & Infrastructure Support — Turnkey AI Pipeline Ecosystem

DECT Global provides a complete technological infrastructure through **Krystal Platform**, **ACES/OCIO toolchain**, and the **GCGPS production system**:

Universities receive:

- A fully operational **AI + open-source production pipeline** compatible with Blender, Godot, Natron, Krita, Inkscape, Penpot, and more
- Access to Krystal's **AI cloud servers**, enabling:
 - distributed collaborative production
 - real-time rendering and simulation
 - multi-institution asset sharing
- Full ACES 2.0 + OCIO color management
- **AIA (Asset Integrity Assurance)** for metadata lineage, reproducibility, cross-media governance
- **PPS (Predictive Production System)** for forecasting labor, render time, and cross-studio scheduling
- **Krystal Campus Nodes** for local deployment (private GPU/CPU clusters)

Result:

CIDF becomes **not just a course**, but a **functioning creative production center** capable of running:

- studio-style 3D pipelines
- XR labs
- AI-driven animation
- cross-media rendering
- transmedia storytelling ecosystems
- multi-nation co-production projects

C. Global Certification & Quality Assurance — GCGPS Standards, Exams & Faculty Training

DECT Global operates the **GCGPS Global Certification Framework**, which establishes:

- Reproducible creative pipelines
- International production standards
- AI governance norms
- ACES/OCIO-compliant creative workflows
- AIA/PPS metadata protocols
- Color science consistency across film, game, and XR rendering

The university and its learners gain:

- **Student certification:** GCGPS Technical Certificate (ACES/OCIO + AIA + PPS)
- **Program accreditation:** CIE Education Partner designation
- **Faculty credentialing:** Training in AI-assisted design, color science, transmedia governance, and intelligent pipeline management
- **Academic QA integration:** Annual review cycles aligned with global production changes and AI model evolution

Result:

The department becomes a **recognized node** in a global creative network — advancing academic prestige, research value, and international standing.

D. Industry & Employment Integration — From Classroom to Global Creative Careers

Through **DECT-GES**, DECT Global directly connects students to worldwide creative employment:

- AI-powered job-matching systems
- CIE Career Exchange Platform
- Cross-border internships and studio placement
- Co-production opportunities for global IPs (Zheng He, Marco Polo, future DECT universes)
- Paid participation in DECT Labs R&D projects
- Career tracking and alumni development

DECT builds a **full education-to-industry loop**:

Learning → Creation → Certification → Production → Employment → Innovation

Result:

Graduates enter a real ecosystem of studios, XR labs, AI startups, and global production networks.

E. Research & Innovation Collaboration — Establishing a CIE Research Center

Together with **DECT Labs & Krystal R&D**, universities can establish a **Creative Intelligence R&D Hub**, focusing on:

- AI for creativity and next-gen education
- Intelligent workflows, agents (MCP), and RAG knowledge systems
- ACES/OCIO research and transmedia color pipelines
- Digital ethics & AI governance
- Cultural intelligence, soft power & digital diplomacy
- Creative robots, automated animation, virtual humans, and virtual production
- Contributions to **GCGPS standardization**

Joint outputs:

- Academic publications
- International research conferences (IAICC)
- Cross-border research collaborations
- New AI and CG tools open-sourced via Krystal Platform

Result:

The university becomes a **global innovation hub**, not just a teaching site.

F. Cultural, Community & Global Engagement — Connecting Students to the World

DECT Global's media and cultural divisions provide:

- IAICC global conferences and competitions
- OriginCG community engagement
- CG Global Entertainment transmedia productions

- DECT creative festivals and events
- Global student exchange pathways
- Opportunities for students to contribute to transmedia universes (Zheng He, Marco Polo, Digital Silk Road, etc.)
- Access to cultural and creative diplomacy networks

Result:

Students and faculty become contributors to international creative culture, not just local participants.

3. Institutional Advantages for the University

Category	Benefit	Example
Academic	Ready-made, internationally benchmarked CIE curriculum & certification	Integration of CITA/CIGD/CIAD as official university pathways
Technological	Plug-and-play AI+CG pipeline infrastructure	Krystal Platform, ACES/OCIO, AIA/PPS deployment
Industry	Direct employment, co-production, studio immersion	DECT-GES Jobs, Zheng He Universe productions
Research	Joint innovation labs, publications, and conferences	CIE Research Center, IAICC participation
Cultural	Global academic diplomacy and creative partnerships	IAICC networks, global exhibitions
Economic	New revenue streams through licensing, co-branding, grants	Program franchising, AI innovation funding

4. Expected Outcomes of the Partnership

For Students

- Hands-on experience using real industry pipelines
- Dual credentials: **University Degree + GCGPS Certification**
- Ready-to-hire capabilities in global production studios
- Ability to build AI-assisted 3D, XR, film, and transmedia experiences

For Faculty

- Access to high-end training & global professional networks
- Participation in research, publication, and co-production
- Leadership in emerging Creative Intelligence disciplines

For the University

- Reinforced status as a regional and global leader in AI + Creativity
- New funding, partnerships, and international recruitment
- Integration into the global Creative Intelligence Network

5. Rationale — Why a DECT Partnership is Transformative

1. Resolves the global creative tech talent shortage

By merging AI, CG, XR, code, color science, and creativity in one framework.

2. Future-proofs graduates

Students learn to **work with AI**, not compete against it.

3. Positions the university as a global CIE hub

Universities become official **Creative Intelligence Nodes** in the DECT network.

4. Aligns with national & regional strategic policy

Supports Hong Kong's CIE Blueprint, China's Digital Culture Strategy, UNESCO Creative Cities, and more.

5. Creates measurable academic & economic value

The department becomes a center for talent production, IP creation, AI research, and international collaborations.

6. Proposed Collaboration Model

Phase	Description	DECT Role	University Role
Phase 1: Foundation (Year 1)	Planning, localization, infrastructure setup	Provide curriculum, standards, Krystal Node	Approve programs, allocate faculty & space
Phase 2: Launch (Year 2)	Pilot programs, faculty certification	Train instructors, activate Krystal systems	Deliver teaching, enroll students
Phase 3: Expansion (Year 3+)	Research Center, global partnerships	Co-lead research & IAICC events	Degree accreditation, cross-faculty scaling

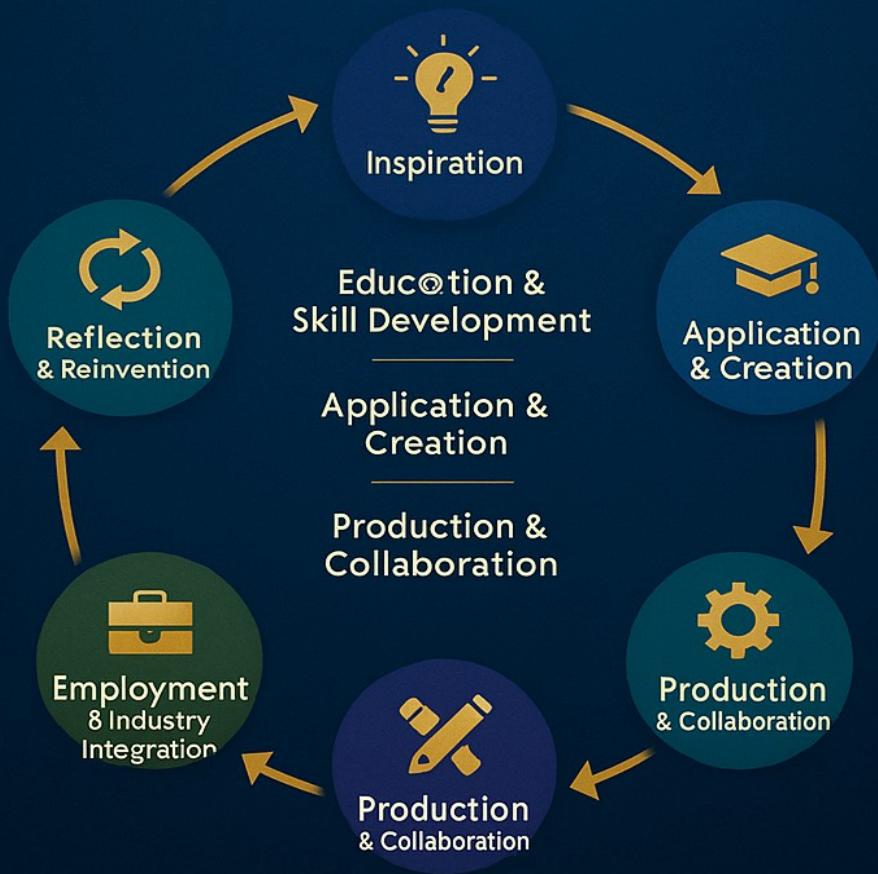
7. Conclusion

The establishment of a **Creative Intelligence & Digital Futures Department**, powered by DECT Global, represents a **once-in-a-generation** academic transformation.

DECT does not provide a curriculum —

****it provides a full creative civilization engine:**

education → standards → production → research → employment → culture → global networks.**


Partnering with DECT Global means the university will not simply teach creativity —

it will become a founding pillar of the worldwide Creative Intelligence Economy.

CREATIVE INTELLIGENCE LOOP

DECT GLOBAL PEDAGOGICAL FRAMEWORK

SIX PHASES

- 1 **Inquiry, curiosity through on, culture, AI, and Storytelling**
- 2 **Education & Skill Development:** Building creative and cognitive capabilities using open source
- 3 **Application & Creation**

PEDAGOGICAL PRINCIPLES

- AI Enhanced Creativity
- Open Source Foundation
- Learning by Doing
- Ethical & Sustainable Practice

OUTCOMES

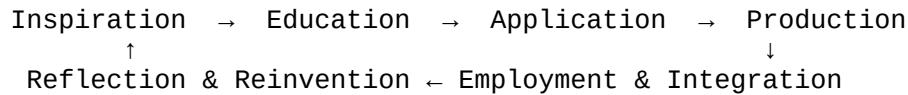
- Employment ready graduates skilled in creativity + AI
- Research output linked to creative technologies
- Sustainable creative ecosystems driving inclusive growth

DECT Global Pedagogical Framework: The Creative Intelligence Loop

1. Overview

The **Creative Intelligence Loop (CIL)** is the pedagogical and operational backbone of DECT Global's education-to-industry model.

It integrates **AI, open-source tools, creative production, and lifelong learning** into a continuous cycle of growth — ensuring that every learner, educator, and partner organization contributes to a *living ecosystem* of innovation and opportunity.


This framework connects **students → institutions → industry → society**, allowing creative knowledge to circulate like capital within the **Creative Intelligence Economy (CIE)**.

◆ 2. The Six Phases of the Creative Intelligence Loop

Phase	Name	Purpose	Output	Key Tools / Systems
1	Inspiration	Ignite curiosity through exposure to art, culture, AI, and storytelling.	Motivation, curiosity, creative mindset.	Guest lectures, design thinking sessions, cultural intelligence labs.
2	Education & Skill Development	Build foundational technical, creative, and cognitive skills using open-source and AI tools.	Competent learners ready for applied creation.	Krystal Institute curriculum, CITA/CIGD/CI-Blender courses.
3	Application & Creation	Students apply knowledge to design, prototype, and produce creative content or AI-driven solutions.	Tangible creative projects and prototypes.	Blender, Godot, GCGPS workflow, AI model integration.
4	Production & Collaboration	Transition from classroom to studio simulation and real-world co-production environments.	Market-ready media assets or IP prototypes.	DECT Studios, CG Global Entertainment, Krystal Cloud.
5	Employment & Industry Integration	Match graduates with real-world roles, internships, or entrepreneurship incubators.	Skilled creative technologists in workforce.	DECT-GES Career Platform, partner company projects.
6	Reflection & Reinvention	Encourage ongoing learning and innovation through feedback, research, and reinvestment in education.	New knowledge and improved pedagogy feeding back into Loop.	Research labs, GCGPS R&D, faculty exchange, innovation grants.

⌚ 3. Visual Concept — The Loop as a Cycle of Intelligence

Flow Diagram (for visual design / page layout):

Interpretation:

Each phase both produces *value* and *feeds* the next.

Knowledge never leaves the system — it evolves, multiplies, and reinvests.

◆ 4. Pedagogical Principles Behind the Loop

Principle	Description
AI-Enhanced Creativity	Human imagination amplified by intelligent tools — turning data into art and innovation.
Open-Source Foundation	Every learner gains access to industry-grade creative technologies (Blender, Godot, Krita, GCGPS) without financial barriers.
Learning by Doing	Project-based studio simulations replace theoretical exams, reflecting real production environments.
Cultural Intelligence	Creativity grounded in empathy, diversity, and respect for cultural identity.
Ethical & Sustainable Practice	All creative acts are guided by DECT's Ethical Creation Framework: Transparency, Accountability, Inclusivity, Sustainability.
Lifelong Learning Ecosystem	Graduates remain part of DECT's global network for ongoing upskilling, research, and creative employment.

✿ 5. Institutional Integration

Academic Level	CIL Focus	Example Implementation
Foundation (Year 1)	Curiosity, digital literacy, AI introduction.	Modules like <i>CIE1001 Creative Intelligence & Digital Economy</i> .
Intermediate (Year 2–3)	Skill mastery, project collaboration.	Courses: <i>CIGD, CI-Blender & VFX, Procedural Art & Game Design</i> .
Advanced (Year 4+)	Professional practice, portfolio, global co-production.	<i>Studio Simulation II, Capstone Projects, Internship</i> .
Postgraduate / Lifelong	Innovation, leadership, pedagogy research.	<i>Krystal Research Labs, GCGPS Certification, DECT Educator Training</i> .

◆ 6. The Creative Intelligence Loop in Practice (Example)

1. Student joins FCIM program → learns through open-source creative tools.

2. **Develops project** → exported through GCGPS pipeline under instructor mentorship.
3. **Project selected for DECT Studio internship** → receives industry supervision.
4. **Output integrated into global production (e.g., Zheng He project).**
5. **Student hired / publishes / sells IP** → reinvests in next cohort as mentor or alumni partner.

→ Cycle restarts with new inspiration.

7. Global Alignment and Impact

The Creative Intelligence Loop aligns with:

Institution / Framework	Alignment
UNESCO Creative Economy Framework (2023)	Promotes cultural innovation and sustainable creative education.
WIPO & OECD Creative Industry Indicators	Connects intellectual property development to economic growth.
UN SDGs (4, 8, 9, 17)	Quality Education, Decent Work, Innovation, Partnerships.
ASWF / GCGPS Integration	Global interoperability and open-source standardization for creative production.

8. Outcomes of the Framework

For Students	For Universities	For Society
Employment-ready graduates skilled in creativity + AI.	Stronger industry integration and innovation capacity.	Sustainable creative ecosystems driving inclusive growth.
Access to open infrastructure and global networks.	Research output linked to creative technologies.	Cross-cultural dialogue and soft-power development.
Lifelong learning and entrepreneurship pathways.	Increased visibility in the global creative economy.	Cultural and economic resilience through creativity.

🏁 9. Conclusion

The **Creative Intelligence Loop** transforms education from a **linear system of instruction** into a **circular ecosystem of innovation**.

In DECT Global's vision, **creativity becomes infrastructure, imagination becomes measurable capital, and education becomes a living economy**.

“In the Creative Intelligence Economy, learning never ends — it evolves.”

AI, CG, VFX, XR, and
software engineering

Unity, Godot

upU

V v
vill
ice

notes

复杂的
母语
学习
处立

Course Materials Are in English, but Instruction Is in Chinese or Local Languages

The CIDF Program adopts a **dual-language academic model** that is widely used in international higher education, especially in fields involving **technology, creativity, and global industry standards**.

Below are the **seven key reasons**.

1. English is the global standard language for AI, CG, VFX, XR, and software engineering

Most professional tools, documentation, and pipelines — including:

- ACES / OCIO
- Blender, Unreal, Unity, Godot
- ComfyUI, ControlNet, Stable Diffusion
- Python, Django, Git
- VFX workflows
- AI models and libraries

— are written in **English**, with updates, version notes, and documentation published in English first.

Therefore:

 If students hope to join global studios, read documentation, or use cutting-edge tech, English must be the standard for written curriculum materials.

This ensures consistency with international industry practice.

2. English curriculum ensures international compatibility and future portability

The CIDF curriculum is designed to align with:

- **ECTS (European Credit Transfer System)**
- **Global university articulation frameworks**
- **Cross-border accreditation standards**

- **International student and faculty mobility**

 To articulate to overseas institutions, curriculum documents must be in English.

This ensures the program is:

- Recognized across Europe
- Recognized by international universities
- Eligible for joint degrees and dual awards
- Accessible for future accreditation and audits

Even when taught locally in Chinese.

3. English is necessary for GCGPS, ACES/OCIO, and DECT Global's international ecosystem

DECT Global, IAICC, and GCGPS are:

- Multi-country
- Multi-language
- Operating across Asia, Europe, and North America

All **technical standards, pipelines, and certification documents** are written in English to ensure global uniformity.

 The CIDF program must align with these standards to maintain its global integrity.

4. Local instruction in Chinese ensures full accessibility and equity for local learners

Many local students — especially in Mainland China, GBA cities, and Taiwan — may:

- Be more comfortable learning in **Mandarin or Cantonese**
- Benefit from explanations, discussions, critiques in a native language
- Understand complex AI and pipeline concepts better through bilingual instruction

👉 **Teaching in Chinese ensures no student is disadvantaged because of English proficiency while still receiving world-standard content.**

This is essential for:

- Skill mastery
- Classroom engagement
- Knowledge retention
- Practical project success

5. Dual-language teaching reflects the global industry reality

In real production environments:

- Documentation is predominantly in **English**
- Meetings, critiques, and internal communication may be in **local languages**
- Team work often happens in mixed-language environments

👉 **CIDF prepares students for exactly this scenario.**

It develops:

- ✓ Technical English reading ability
- ✓ Industry vocabulary
- ✓ Local-language collaboration skills
- ✓ Multilingual communication — a valuable asset in global production pipelines

6. English materials allow continuous updates from global AI + CG research

AI and CG technologies evolve fast:

- New diffusion models weekly
- New ACES transforms
- Updated ControlNet models
- New pipeline standards
- Emerging XR frameworks

All these updates — white papers, GitHub repos, model releases — are in **English**.

📌 **Using English course documents allows instant updates without translation delay.**

CIDF can stay current with:

- OpenAI
- Stability AI
- Blender Foundation
- Unreal Engine
- ACES/OCIO governance
- Khronos Group
- DECT Global R&D

This keeps the program *future-proof*.

7. Local-language instruction supports cultural relevance and real-world projects

Projects often require:

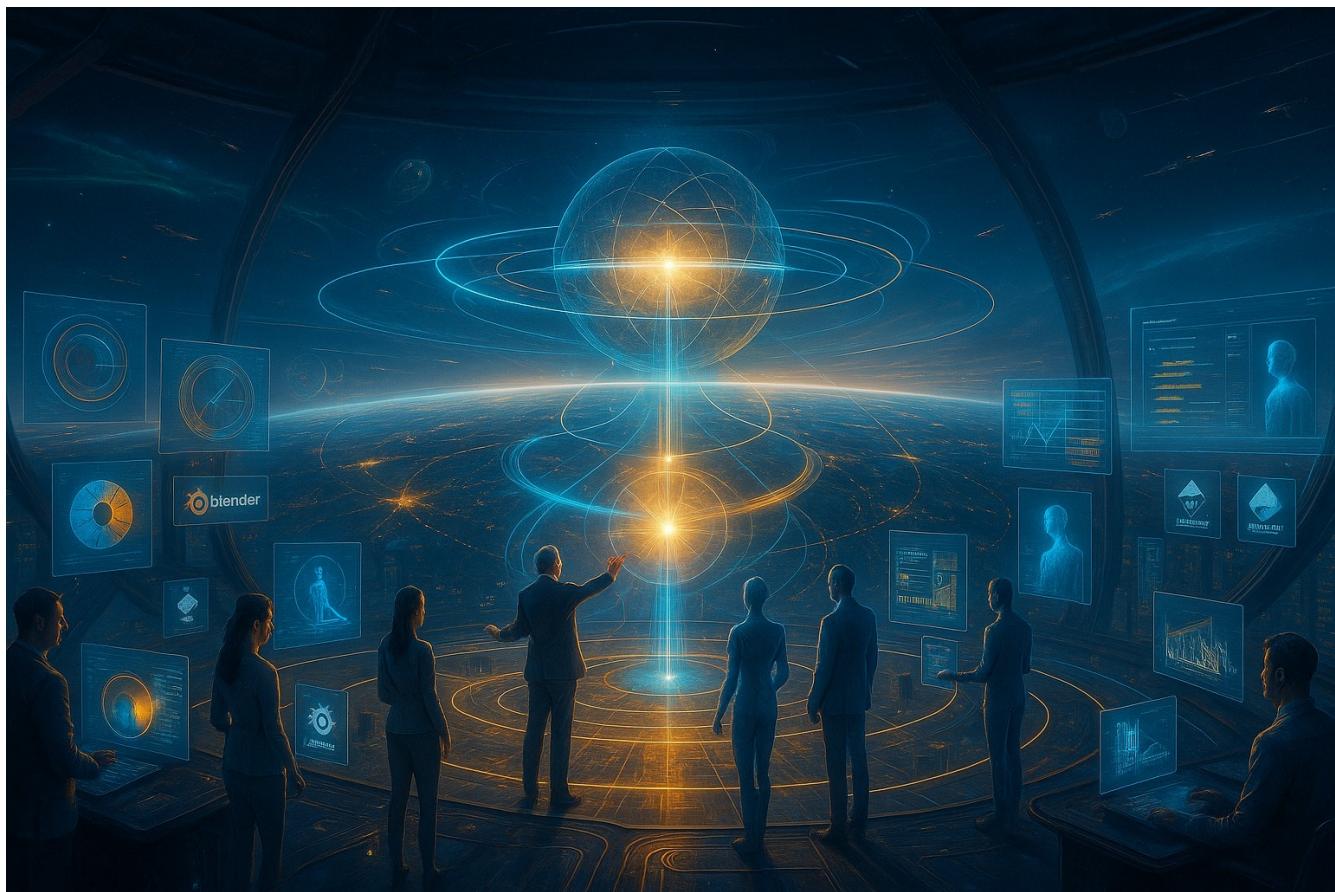
- Storytelling in local cultural contexts
- Heritage, history, or narratives in Chinese
- Market-based product design
- Local user experience testing
- Communication with industry mentors in Chinese

📌 **Teaching in local language ensures the content is relevant, meaningful, and applicable to local industries.**

This also supports:

- Cultural identity
- Local IP creation
- Integration with regional creative ecosystems

Conclusion (for accreditation / official documentation):


The CIDF program uses English for curriculum documentation to maintain global academic compatibility, align with international technical standards, and ensure students can access cutting-edge research and tools.

Instruction is delivered in Chinese or local languages to ensure accessibility, comprehension, cultural relevance, and equitable learning for local students.

This *dual-language model* ensures:

- World-class standards
- Local inclusivity
- Global career readiness

It is widely accepted in international creative technology education.

COURSE OBJECTIVES

(*Creative Intelligence & Digital Futures — CIDF Program*)

1. Build foundational creative intelligence (CIE) for the AI era

Enable students to understand, operate, and innovate with the latest AI and CG technologies.

This objective establishes the intellectual backbone of the program.

Students develop *Creative Intelligence*, a core competency that merges:

- Creative reasoning
- Technological literacy
- Cultural understanding
- Problem-solving through design and imagination

In the AI era, creativity is no longer limited to artistic output — it is a strategic capability that allows individuals to collaborate with advanced AI systems (LLMs, generative models, diffusion models, autonomous agents).

By understanding the foundations of:

- Text-to-image (T2I)
- Text-to-video (T2V)
- Text-to-music (T2M)
- Prompt engineering
- ControlNet conditioning
- Large-model behavior

Students are equipped to **think beyond software proficiency** and instead develop the mindset needed to **direct, supervise, and innovate** with AI as a creative partner.

This prepares them for the next-generation Creative Intelligence Economy (CIE), where *human imagination + machine intelligence* becomes the primary driver of economic value.

2. Develop proficiency in the GCGPS AI+CG production pipeline

Integrate ACES/OCIO color science, ComfyUI-ControlNet workflows, and AIA/PPS governance.

This objective ensures students can operate in a **real, professional, studio-grade pipeline**.

The GCGPS pipeline is not a theoretical model — it is used in DECT Productions, Zheng He IP, and large-scale creative technology ecosystems.

Students learn:

✓ ACES 2.0 (scientific color accuracy)

Understanding how professional color systems manage light, exposure, and display transformations globally.

✓ OCIO (technical color interoperability)

How color remains consistent across Blender, Unreal, Nuke, Godot, and compositing.

✓ ComfyUI + ControlNet

Students master node-based AI workflows, including:

- Pose-guided AI
- Depth-controlled AI
- Sketch-to-render
- Scene consistency
- AI-driven VFX

✓ AIA (Asset Integrity Assurance)

How pipelines certify assets across global teams — a world-first governance innovation.

✓ PPS (Production Planning & Scheduling)

Students learn how timelines and production flows are managed in a global studio environment.

By integrating these elements, learners become capable of functioning inside **global, multi-studio, AI-enhanced pipelines** — something incredibly rare in typical academic training.

3. Equip learners with full-stack creative production capabilities

Cover asset creation, real-time engines, 3D/VFX, XR, and full-stack web deployment.

Modern digital creators must be *multi-disciplinary*.

CIDF ensures students gain a **full-stack creative skill set**, including:

3D Production (Blender)

- Modeling
- Rigging
- Lighting
- Rendering
- Animation
- Materials / shaders

VFX Simulation (AI-driven + physics-based)

- Particle systems
- Fluid/cloth simulation
- AI roto, inpainting, super-resolution

Game Design / Real-time Engines (Godot)

- Scene logic
- UI/UX
- Game mechanics
- Interactive environment design

XR Production

- VR prototyping
- AR interactions
- Spatial computing
- Multi-modal immersive experiences

Full-Stack Web Development (Django)

- Creative tool interfaces
- backend systems
- asset management
- AI integration tools

This objective builds **full production versatility**, positioning graduates as creators who can:

- Build assets
- Integrate them into engines
- Publish applications
- Manage pipelines
- Oversee deliveries

This rounded capability makes them *highly employable* in China, Europe, and global studios.

4. Produce industry-ready digital talent for DECT, IAICC, and global studios

Train graduates to meet modern CG, AI, XR, and pipeline technical artist requirements.

This objective ties directly into DECT Global's economic ecosystem.

Graduates are prepared for immediate entry into:

- DECT Studios
- Zheng He / Marco Polo IP productions
- IAICC Creative Intelligence community
- Industrial partners in China, EU, SEA
- XR companies
- CG/VFX studios
- Creative tech teams
- Start-ups in digital innovation

They develop the industry's most requested skillsets:

- AI Technical Art

- CG Generalist with AI skills
- Pipeline TD (Technical Director)
- XR Designer
- VFX Artist
- Asset & Environment Artist
- Creative Technologist
- Interaction Designer

The CIDF curriculum ensures graduates are more than generalists — they are **AI-native creative engineers**, a workforce profile still extraordinarily scarce globally.

5. Encourage interdisciplinary innovation

Blend art, engineering, design, and AI into new forms of storytelling and problem-solving.

This objective reflects the philosophy of the CIDF program.

Students develop hybrid creative intelligence by blending:

Art

Visual thinking, composition, aesthetics, storytelling.

Engineering

Python automation, tool creation, pipeline logic.

Design

User experience, systems thinking, interactive design.

Artificial Intelligence

Generative models, ControlNet, AI-assisted production workflows.

This combination equips students to innovate in fields such as:

- AI-driven filmmaking
- XR experiences
- Game + film hybrid media
- Simulations

- Virtual production
- Transmedia storytelling
- Digital cultural heritage
- Creative automation

By encouraging interdisciplinary thinking, CIDF ensures students do not merely follow industry trends — they *create* them.

6. Align with global academic standards

Meet ECTS-compatible outcomes and ensure portability to European, GBA, and global institutions.

This objective ensures academic legitimacy and global recognition.

The CIDF program follows:

✓ ECTS (European Credit Transfer System)

→ 72 ECTS equivalent (36 local credits)

✓ Learning outcome-based education

→ Skills, knowledge, competencies

✓ Assessment-based validation

→ Assignments, portfolios, exams, capstone

✓ Interdisciplinary structure

→ Recognized globally for tech-art integration

✓ Alignment with GBA + EU university partnership models

This alignment:

- Enables articulation with universities overseas
- Supports Shenzhen University collaboration
- Adds academic credibility for IAICC
- Strengthens DECT Global's international footprint

It ensures graduates' credentials are meaningful beyond the program — they are recognized internationally.

EMBARK ON AN
AI + CG
LEARNING JOURNEY

APPLY NOW

PROGRAM LEARNING OUTCOMES (PLOs) – CIDF v3.0

Integrated AI, CG, Transmedia & Pipeline Governance Edition

Upon successful completion of the CIDF program, graduates will be able to demonstrate the following **nine advanced learning outcomes**:

PLO 1 — Explain and Apply Creative Intelligence (CIE) Concepts

Graduates will be able to:

1.1 Demonstrate mastery of Creative Intelligence (CIE) principles

- Explain how imagination, computation, and cultural value converge in the Creative Intelligence Economy (CIE).
- Analyze global digital-era shifts in automation, AI, XR, and cultural transformation.
- Predict creative, economic, and societal impacts of emerging technologies.

1.2 Use CIE frameworks for creative problem-solving

- Apply CIE models to evaluate technologies like generative AI, XR, LLMs, robotics, autonomous agents.
- Use creative reasoning to develop solutions, story concepts, prototypes, and new digital futures.

1.3 Communicate CIE insights effectively

- Produce essays, research reports, transmedia concept proposals, narrative framing documents, and pitch decks.

In practice:

Students use CIE to justify technical choices, cultural design, and innovation strategies across film, XR, game, and AI tools.

PLO 2 — Operate the Full AI Model Ecosystem (T2I / T2V / T2M / TTS / STT / LLMs)

Graduates will be able to **run, evaluate, and direct modern multimodal AI systems**, including:

2.1 Text-to-Image

- FLUX.1, Qwen-Image, HiDream-I1, SD3-Medium
Use pose, depth, edge, sketch, segmentation controls through ControlNet.

2.2 Text-to-Video

- Wan 2.2, HunyuanVideo-1.5, Open-Sora 2.0, Mochi-1
Direct cinematic generation with storyboards, layer-based conditioning, and reference consistency.

2.3 Text-to-Music / Audio

- MusicGen, ACE-Step, DiffRhythm
Generate scores, ambience, and timing layers for animation and XR scenes.

2.4 Text-to-Speech / Speech-to-Text

- XTTs-v2, CosyVoice2, Whisper-v3 Turbo, Voxtral, Granite Speech
Implement voice pipelines for characters, dubbing, narration, and accessibility.

2.5 Large Language Models

- Llama 3.1/4, Qwen-3, DeepSeek-V3/R1, Gemma 2
Use LLMs for scripting, lore generation, system orchestration, agent workflows.

2.6 ComfyUI / ControlNet Mastery

Construct advanced node graphs controlling:

- Depth consistency
- Pose and silhouette
- Edge maps
- Segmentation
- Multi-model blending
- LoRA-based style control

2.7 Responsible AI Usage

Apply attribution, rights-awareness, safety, and ethical model handling.

In practice:

Students create production-quality concept art, animatics, previs videos, soundscapes, voice pipelines, and iterative prototypes.

PLO 3 — Produce 3D, VFX, XR, and Interactive Content Across All Media Types

Graduates will be able to:

3.1 3D Asset Creation

- Model, UV, shade, light, animate in Blender.
- Use **text-to-3D pipelines** (Hunyuan3D-2, TripoSR, SAM-3D, Shap-E).
- Auto-rig with UniRig, Rigify, Auto-Rig Pro.

3.2 Text-to-Animation & AI Motion Systems

- Use Text2Motion, BlenderMCP + CSM.ai, and DeepBlender.
- Generate AI-assisted facial motion, secondary motion, and physics approximations.
- Clean, retarget, and human-refine AI motion for production.

3.3 VFX / Simulation

- AI roto, inpainting, depth-based FX, upscaling.
- Fluid/cloth simulation, particles, physics-based effects.

3.4 XR Production

- Build VR prototypes, AR interactions, WebXR experiences.

3.5 Real-Time Engines (Godot)

- Create UI/UX, interactions, gameplay logic, procedural systems.

Graduates master five production pillars:

- ✓ CG asset creation
- ✓ VFX simulation
- ✓ XR prototyping
- ✓ Game design fundamentals
- ✓ Procedural and AI-augmented environments

PLO 4 — Apply the GCGPS AI+CG Production Pipeline Across All Stages

Graduates will be able to execute full production cycles used in global studios.

4.1 Pipeline Execution

Follow GCGPS-aligned stages:

Ideation → **AI Previs** → **Layout** → **Animation** → **FX** → **Lighting** → **Rendering** → **Compositing** → **Delivery**

4.2 Color Science

- Apply **ACES 2.0** for light and exposure accuracy.
- Use **OCIO** for interoperability across Blender, Godot, Unreal, Nuke/Natron.

4.3 Metadata Governance

Use AIA integrity metadata and PPS forecasting tools to maintain:

- Technical reproducibility
- Cross-software compatibility
- Global studio consistency

4.4 Animation Pipeline Integration

Students understand Stage 5 animation in depth:

- Blocking → Spline → Performance → Secondary Motion → Polish
- AIA/PPS logging
- Alembic/USD cache export
- Director approval workflow

This ensures studio-grade production literacy.

PLO 5 — Build Pipeline Automation Tools and AI-Integrated Utilities

Graduates will be able to:

5.1 Python for Automation

- Write scripts for naming, versioning, rigging automation, batch processing, asset QC.

5.2 Tool Creation

- Build custom Blender/Godot utilities.
- Automate AIA metadata generation.
- Interface with text-to-motion and text-to-3D systems.

5.3 Krystal Platform Integration

- Use database APIs, asset lineage tools, and cloud-sync pipelines.

5.4 AI-Driven Pipelines

- Integrate LLM agents and MCP/RAG workflows for creative tool orchestration.

This prepares graduates as **Pipeline TDs / Creative Technologists**, one of the most employable roles globally.

PLO 6 — Design and Deploy Media Applications (Web, Tools, XR)

Graduates will be able to:

6.1 Full-Stack Development

- Build Django applications, APIs, dashboards, & asset managers.

6.2 AI-Enhanced Creative Tools

- Create custom prompt interfaces, AI asset browsers, XR tools.

6.3 Deployment

- Publish interactive web apps, XR experiences, and creative tools to production-level environments.

This ensures students operate at the intersection of software engineering and digital creativity.

PLO 7 — Demonstrate Professional Studio Collaboration and Production Skills

7.1 Team Collaboration

Students work like a real studio:

- Dailies
- Feedback cycles
- QC reviews
- Agile/Scrum-style task management
- Director's notes & iteration

7.2 Communication

- Professional documentation
- Pitching
- Technical breakdowns
- Production reporting

7.3 Cross-Disciplinary Skills

Collaborate across:

- AI engineers
- Animators
- Designers
- XR developers
- Pipeline TDs

This is essential for careers in film, TV, games, XR, and AI studios.

PLO 8 — Pass the GCGPS Certification Exam

Graduates demonstrate mastery in:

- **AIA** – asset integrity & lineage
- **PPS** – forecasting, resource planning
- **ACES/OCIO** – scientific color & interoperability
- **AI production models** – T2I/T2V/T2M/TTS/STT/LLMs
- **Reproducible pipelines** – v1.0 delivery standards

This certification parallels industry exams (Houdini, Unreal, USD workflow exams).

PLO 9 — Deliver and Defend a Major Transmedia Capstone Project

Graduates will be able to:

9.1 Produce a 3–6 month studio-grade capstone

- AI-driven film prototype

- XR experience
- Game module
- Transmedia storytelling experience
- Pipeline tool or automation system

9.2 Integrate Transmedia Governance Principles

Apply:

- Canon hierarchy (Core → World → Media → Local)
- Cross-media asset lineage
- ACES color mapping (film → game → XR)
- AIA metadata for all assets

9.3 Present & Defend Work

Present to faculty, DECT partners, and studio professionals:

- Technical decisions
- Creative rationale
- Pipeline integration
- Cultural authenticity
- Production methodology

Graduates leave with a professional portfolio and industry-ready experience.

PHASE I · FOUNDATION

CREATIVE INTELLIGENCE · AI LITERACY · OPEN-SOURCE TOOLS

PHASE II · APPLIED PRODUCTION

PROCEDURAL ART · GAME DESIGN · INTERACTION · UTERACTION · UX

PHASE III · CINEMATIC & IMMERSIVE

CAPSTONE PROJECT · INDUSTRY IMMERSION · TRANSMEDIA PRODUCTION

GCGPS

Full CIDF Curriculum

PHASE I — FOUNDATION (Months 1–3)

Theme: *Creative Intelligence · AI Literacy · Open Tools*

Module Code	Module Title	Hours / Credits	Assessment	Pipeline Integration	Description (Summary)
CIE1001	Creative Intelligence & Digital Economy	45 hrs / 3 cr	Essay + Presentation	Stage 0 – Initialization; Intro to ACES/OCIO, GCGPS	Introduces the Creative Intelligence Economy (CIE). Students study how AI, culture, design, and automation reshape global digital industries. Hands-on training in ComfyUI, ControlNet, LoRA, T2I/T2V workflows for rapid ideation, concept art, previs, and animation prototypes.
CIE1002	AI Tools for Creators	60 hrs / 4 cr	Practical AI Project	Stage 1 – Concept/Previs; AI prototyping	Students learn essential tools for CG, digital painting, and real-time design. Establishes core technical literacy for downstream production.
CIE1003	Open-Source Creative Toolkit (Blender, Krita, Godot)	60 hrs / 4 cr	Portfolio	Stage 2 – Asset Foundations	Teaches ideation, cultural storytelling, design thinking, narrative structures, and use of cultural LoRA packs + ControlNet for ideation.
CIE1004	Design Thinking & Cultural Narratives	45 hrs / 3 cr	Prototype	Stage 1 – Concept; Narrative Design	Students learn Python for automation, metadata tagging, file systems, and Krystal API integration for creative pipelines.
CIE1005	Python Programming for Creative Media	60 hrs / 4 cr	Coding Test	AIA automation; Metadata scripting	

Pipeline Stages Covered:

- ✓ Stage 0 – Initialization
- ✓ Stage 1 – Story/Concept/Previs
- ✓ Stage 2 – Asset Foundations

PHASE I — FOUNDATION (Months 1–3)

Theme: *Creative Intelligence · AI Literacy · Open-Source Tools*

Phase I establishes the intellectual, technical, and creative base upon which the entire CIDF curriculum is built.

This phase ensures that all students — regardless of background — develop:

- **A shared conceptual framework** (Creative Intelligence Economy)
- **A global language of production** (English technical terms + Chinese instruction)
- **AI literacy** (T2I, T2V, ControlNet, LoRA)
- **Open-source creative fundamentals** (Blender, Krita, Godot)
- **Pipeline fluency** (ACES, OCIO, GCGPS awareness)
- **Foundational coding competence** (Python for creative media)
- **Early-stage design and narrative thinking** (cultural perspectives + ideation)

Phase I prepares students to move from *consumers* of technology to *creators and operators* of AI+CG systems.

MODULE-BY-MODULE ELABORATION

CIE1001 – Creative Intelligence & Digital Economy

Hours: 45

Credits: 3

Key Assessment: Essay + Presentation

Pipeline Role: Introduction to GCGPS pipeline, ACES/OCIO, global AI governance

✓ What This Module Teaches

This module introduces the conceptual foundation of the CIDF program: the **Creative Intelligence Economy (CIE)**. Students learn:

- How creativity, AI, and culture shape the modern digital economy
- How global industries (film, games, XR, AI) are evolving

- How imagination and intelligence converge into new forms of economic value

They also receive their first exposure to:

- The **GCGPS AI+CG production pipeline**
- The role of **ACES/OCIO** in global color management
- The importance of governance (AIA, PPS, metadata integrity)
- The emerging standards for AI usage

✓ Why This Matters

This module builds **strategic awareness**: students understand *why* the rest of the curriculum exists and *how* all later modules connect.

✓ Skills Developed

- Industry literacy
- Digital economy analysis
- Presentation skills
- Critical thinking
- Pipeline awareness

This module ensures every student speaks the **same conceptual language** before moving into technical training.

CIE1002 – AI Tools for Creators

Hours: 60

Credits: 4

Key Assessment: Practical Project

Pipeline Role: *Stage 0–1:* T2I, T2V, ControlNet basics, ComfyUI workflow fundamentals

✓ What This Module Teaches

This is the first hands-on AI course in CIDF. Students learn:

- **Text-to-Image (T2I)** using diffusion models
- **Text-to-Video (T2V)** for previs and animatics
- **ControlNet**: pose, depth, canny, segmentation
- **LoRA models** for style and character consistency

- **ComfyUI fundamentals:**
 - Node graph workflow
 - Prompt conditioning
 - Image sequencing
 - Model selection and versioning
 - Metadata and reproducibility

✓ Why This Matters

AI is not an optional skill — it is the **new foundation** of creative production.

This module ensures students can confidently generate:

- Concepts
- Visual ideas
- Rough scenes
- Previs
- Animated sequences

It directly prepares learners for Phase II (applied production) and Phase III (cinematic workflows).

✓ Skills Developed

- AI production fluency
- Prompt engineering
- Data conditioning
- Model integration
- Creative iteration

CIE1003 – Open-Source Creative Toolkit

Hours: 60

Credits: 4

Key Assessment: Portfolio

Pipeline Role: Blender/Krita/Godot basics → foundation for asset stages

✓ What This Module Teaches

Students are introduced to the **core open-source software stack** used in the GCGPS pipeline:

- **Blender** (3D modeling, shading, animation, lighting)
- **Krita** (digital painting, texture creation)
- **Godot** (real-time engine for interactive narrative + XR foundations)

They learn:

- UI navigation
- Basic workflows
- Scene setup
- Mesh and material basics
- Render fundamentals
- Asset import/export workflows
- Open-source advantages

✓ Why This Matters

These tools are not “optional”; they are the **foundation** for:

- Procedural art (Phase II)
- VR/XR (Phase II–III)
- Cinematic production (Phase III)
- Capstone (Phase IV)

✓ Skills Developed

- Multi-software literacy
- Cross-tool asset workflows
- Portfolio-quality beginner assets

CIE1004 – Design Thinking & Cultural Narratives

Hours: 45

Credits: 3

Key Assessment: Prototype

Pipeline Role: Cultural LoRA packs, reference-only ControlNet, ideation workflows

✓ What This Module Teaches

This course builds the student's ability to:

- Understand cultural narratives
- Apply design thinking methodologies
- Develop ideation workflows
- Use AI responsibly and culturally aware
- Integrate **cultural LoRA packs** for region-specific visual language

Students explore:

- How cultural narratives shape design
- How AI tools can reflect or distort cultural meaning
- How to conceptualize transmedia worlds
- Brainstorming and prototyping methods

✓ Why This Matters

Creative Intelligence means **cultural intelligence**.

This prepares students for:

- Transmedia storytelling
- Game environment ideation
- Character/worldbuilding
- XR narrative design
- AI-driven cultural productions (Zheng He, Marco Polo, heritage projects)

✓ Skills Developed

- Cultural analysis
- Design ideation
- Prototype concepting
- Narrative development

CIE1005 – Python Programming for Creative Media

Hours: 60

Credits: 4

Key Assessment: Coding Test

Pipeline Role: Automation for AIA, metadata tagging, Krystal API intro

✓ What This Module Teaches

Students learn beginner-to-intermediate **Python**, focusing on creative applications:

- Python basics (syntax, loops, data structures)
- File and metadata operations
- Automation tools for creative workflows
- Assets tagging and versioning
- Introduction to **Krystal Platform APIs**
- Scripted asset management
- Automation for ACES/OCIO setups

✓ Why This Matters

In modern pipelines, Python is the **glue language** connecting:

- AI models
- DCC tools
- Databases
- Pipeline integrity systems (AIA, PPS)
- Asset management
- Version control

Even artists need scripting ability in AI-driven CG production.

✓ Skills Developed

- Python coding
- Tool automation
- Pipeline logic
- API integration

- Metadata governance

PIPELINE STAGES COVERED in Phase I

These modules collectively cover:

✓ **Stage 0 – Initialization**

ACES/OCIO basics, ComfyUI setup, model selection, pipeline literacy.

✓ **Stage 1 – Story / Concept / Previs**

AI concept art, T2V previs, ControlNet ideation, cultural narratives.

✓ **Stage 2 – Asset Foundations**

Blender basics, Krita texture workflows, Godot scene fundamentals, Python for automation.

Why Phase I is Critical

Phase I transforms students from **beginners** into **AI-literate, pipeline-aware creators** who can:

- Think creatively
- Operate AI tools
- Use open-source pipelines
- Work in structured production contexts
- Understand cultural needs
- Build foundational assets

This makes Phase I one of the strongest foundations among global creative technology programs.

PHASE II — APPLIED PRODUCTION

(Months 4–6)

Theme: Procedural Art · Game Design · Interaction · User Experience

Module Code	Module Title	Hours / Credits	Assessment	Pipeline Integration	Description (Summary)
CIE2001	Game Mechanics & Interactive Narratives	60 hrs / 4 cr	Playable Demo	Layout & Previs Logic	Students create interactive scenes in Godot; learn systems design, narrative branching, and camera logic.
CIE2002	Procedural Art & Environment Design	60 hrs / 4 cr	Asset Pack	Asset Stage – Procedural Environments	Procedural modeling, node-based materials, modular design, AI-assisted textures, and HDRI lighting.
CIE2003	AI Scripting & Automation in Godot	45 hrs / 3 cr	Technical Script	Tools Stage – Automation	Combines Python + GDScript for automated scenes, AI interactions, metadata functions, and integration with AI outputs.
CIE2004	Studio Simulation I (Game Project)	90 hrs / 6 cr	Team Game Project	Previs → Layout → Early Animation	First studio simulation. Students deliver a complete game prototype with production roles, milestones, QA reviews, and pipeline documentation.
CIE2005	UI/UX Design & Interaction Systems	60 hrs / 4 cr	Wireframe + UX Report	Tooling UI; Dashboard & Interface Design	Teaches UX theory, wireframing, usability testing, and interface design for media tools, games, and XR applications.
CIE2006	AR/VR/XR Production Fundamentals	60 hrs / 4 cr	XR Prototype	Delivery Stage – XR	Students build interactive XR experiences; learn spatial computing, VR/AR logic, shaders, and real-time optimization.
CIE2007	AI Agents, MCP & RAG for Creative Pipelines	45 hrs / 3 cr	AI Agent + RAG Pipeline Demo	Tool Orchestration · Knowledge Retrieval · AIA/PPS Integration	Students learn MCP-based AI agent orchestration and RAG memory systems. They build agents that control creative tools and deploy retrieval pipelines supporting governance, metadata validation, and workflow automation.

Pipeline Stages Covered:

- ✓ Stage 2 – Asset Creation
- ✓ Stage 3 – Layout & Animation
- ✓ Stage 6 – UI/UX for AIA + PPS dashboards
- ✓ Stage 7 – MCP, Agent and RAG

PHASE II — APPLIED PRODUCTION (Months 4–6)

Theme: *Procedural Art · Game Design · UI/UX · Interactive Systems*

If Phase I builds **foundational literacy**, then Phase II transforms students into **applied creators** who can build functioning worlds, procedural assets, interactive environments, and early-stage prototypes.

By this stage, students already understand:

- AI ideation
- ComfyUI workflows
- Open-source tools
- Python basics
- ACES/OCIO fundamentals
- MCP and RAG
- The GCGPS pipeline

Phase II **activates** these skills through real production tasks.

MODULE-BY-MODULE DEEP ELABORATION

CIE2001 – Game Mechanics & Interactive Narratives

Hours: 60

Credits: 4

Assessment: Playable Demo

Pipeline Role: *Previs logic* → *Scene blocking* → *Early layout workflow*

✓ What This Module Teaches

Students learn the fundamentals of:

- Game systems design

- Interactive mechanics
- Story-driven design principles
- Immersive storytelling
- Scene logic & player flow
- Camera behavior and blocking
- Real-time evaluation of prototypes

Students use **Godot** to build:

- Interactive scenes
- Basic gameplay mechanics
- Dialogue and branching paths
- Camera-based previs
- Prototype storytelling experiences

✓ Why This Matters

Modern films, XR apps, and games all rely on **real-time engines**.

This course introduces:

- Early layout planning
- Interaction logic
- Behavioral prototyping
- User-centered experience design

These skills directly translate to **layout (Stage 3)** in the GCGPS pipeline.

CIE2002 – Procedural Art & Environment Design

Hours: 60

Credits: 4

Assessment: Environment Asset Pack

Pipeline Role: *AI-assisted textures → environment base → HDRI generation*

✓ What This Module Teaches

Students learn how to build **large-scale worlds** using:

- Procedural modeling
- Node-based materials
- Procedural landscapes
- Modular environment design
- Lighting basics
- Realistic vs stylized environments

They also integrate AI:

- AI-generated textures via T2I
- HDRI sky lighting generation
- ControlNet depth blending
- Tile-based upscale pipelines

✓ Why This Matters

Procedural workflows are the backbone of:

- Games
- Cinematic backgrounds
- XR environments
- Virtual production
- Transmedia worldbuilding

This module is **direct preparation** for Phase III VFX, XR, and lighting.

CIE2003 – AI Scripting & Automation in Godot

Hours: 45

Credits: 3

Assessment: Technical Test

Pipeline Role: *ComfyUI automation · AI integration · metadata processing*

✓ What This Module Teaches

Students now move from **users of tools** → **creators of tools**.

They learn to script:

- Custom AI-driven behavior

- Procedural interactions
- Automatic scene generation
- Camera path automation
- Metadata readers/writers
- ComfyUI → Godot → pipeline interfaces
- Python-Bridged logic to automate tools

✓ Why This Matters

Studios require technical artists who can:

- Customize tools
- Automate workflows
- Write helper scripts
- Create integration bridges

This module creates exactly that talent.

CIE2004 – Studio Simulation I (Game Project)

Hours: 90

Credits: 6

Assessment: Team Game Project

Pipeline Role: *Covers GCGPS Stages 2–3: Asset → Layout → Early animation*

✓ What This Module Teaches

This is the first **studio simulation module**, where students work in teams to build a functioning game prototype.

Students must:

- Assign team roles
- Build production schedules
- Maintain asset workflows
- Use ACES/OCIO for real-time engine color
- Integrate AI assets responsibly
- Deliver weekly sprints

- Pass internal milestone reviews (AIA-style QC)

The project simulates:

- Real production teams
- Pipeline discipline
- Version control and asset tracking
- Iterative refinement cycles

✓ Why This Matters

This is the students' **first major portfolio piece**, and it prepares them for the more complex cinematic production in Phase III.

CIE2005 – UI/UX Design & Interaction Systems

Hours: 60

Credits: 4

Assessment: Wireframe + Usability Report

Pipeline Role: *Foundation for AIA Interfaces, Krystal dashboards, production tools*

✓ What This Module Teaches

Students learn:

- UX fundamentals
- Wireframing tools
- Component systems
- Information architecture
- User-testing and usability evaluation
- Interface layouts for XR, games, tools, and web apps

They also analyze:

- Industry-standard UI from Unreal, Blender, Figma, Krystal Platform
- How creators navigate production interfaces
- What makes a tool easy or difficult to use

✓ Why This Matters

Every production pipeline needs:

- Internal dashboards
- Asset browsers
- QC interfaces
- Scheduling tools

This module teaches students to design them intelligently.

CIE2006 – AR/VR/XR Production Fundamentals

Hours: 60

Credits: 4

Assessment: Immersive XR Prototype

Pipeline Role: *Foundation for Stage 8/9 delivery — XR, immersive outputs*

✓ What This Module Teaches

Students build their first XR experience, learning:

- Spatial design fundamentals
- VR interaction models
- AR camera logic
- Gesture and controller input
- Real-time shading and lighting
- 3D interaction UX
- How to convert assets from Blender/AI to XR formats

✓ Why This Matters

XR is a major component of:

- The future of storytelling
- Cultural heritage projects
- Simulation-based learning
- Theme parks, exhibitions, museums
- Virtual production
- Real-time previs

This prepares students for Phase III's advanced XR & cinematic projects.

CIE2007 — AI Agents, MCP & RAG for Creative Pipelines (New Module)

Hours: 45

Credits: 3

Assessment: AI Agent + RAG Pipeline Demo

Pipeline Role: Tool Orchestration · Knowledge Retrieval · AIA/PPS Integration

✓ What This Module Teaches

Students learn two core technologies shaping next-generation AI+CG pipelines:

1. MCP (Model Context Protocol) — AI Tool & Workflow Orchestration

Students learn to:

- Build AI agents that control software tools (Blender, Godot, ComfyUI, Django)
- Orchestrate multi-step creative workflows using tool calling
- Connect AI assistants with studio pipelines and automation layers
- Execute MCP actions safely inside production workflows

2. RAG (Retrieval-Augmented Generation) — Memory & Knowledge Systems

Students learn to:

- Build vector database search systems
- Create metadata-driven retrieval processes for productions
- Connect RAG to AIA for asset verification
- Use RAG to support PPS prediction and pipeline governance
- Implement Krystal-compatible knowledge retrieval

✓ They Study:

- MCP architecture and tool-calling fundamentals
- Agent workflows for creative tasks
- JSON schemas, tool definitions, and sandboxed execution

- Embeddings and vector database construction
- Retrieval pipelines (semantic search, metadata search, hybrid search)
- Integration of RAG with studio governance tools
- AI assistant design for creative production environments

✓ They Must Create:

- A functioning **MCP agent** capable of orchestrating a creative workflow
- A **RAG pipeline** using embeddings + vector DB for retrieval
- A **Krystal-compatible metadata search system**
- A **demonstration video + documentation** showing the AI assistant in use

PIPELINE STAGES COVERED in Phase II

Phase II maps directly to the **GCGPS AI+CG Pipeline**, specifically:

✓ **Stage 2 – Asset Development (Advanced)**

Procedural environments, AI-generated textures, modular assets.

✓ **Stage 3 – Layout & Blocking**

Game logic, previs cameras, interactive storytelling.

✓ **Stage 6 – Tooling & UI/UX Foundations**

Early interface design for pipeline tools, AIA dashboards, asset management UIs.

WHAT PHASE II ACHIEVES

✓ **Students become *applied creators*, not just learners**

They produce functioning prototypes and asset packs.

✓ **Students gain cross-disciplinary capability**

Art + Technical + Design + AI.

✓ **Students learn collaborative production**

Studio Simulation I is their first full teamwork experience.

✓ **Students complete 2 major portfolio pieces**

- Environment Asset Pack
- Game Prototype

✓ **Students begin thinking like pipeline operators**

They understand how tools fit into workflows, not in isolation.

✓ **Students prepare for Phase III (Cinematic Production)**

Phase II gives them enough capability to begin VFX, XR, rendering, and web integration.

ACES 2.0

THE SCIENCE OF LIGHT AND COLOR

Wide-Gamut HDR

Color Transform

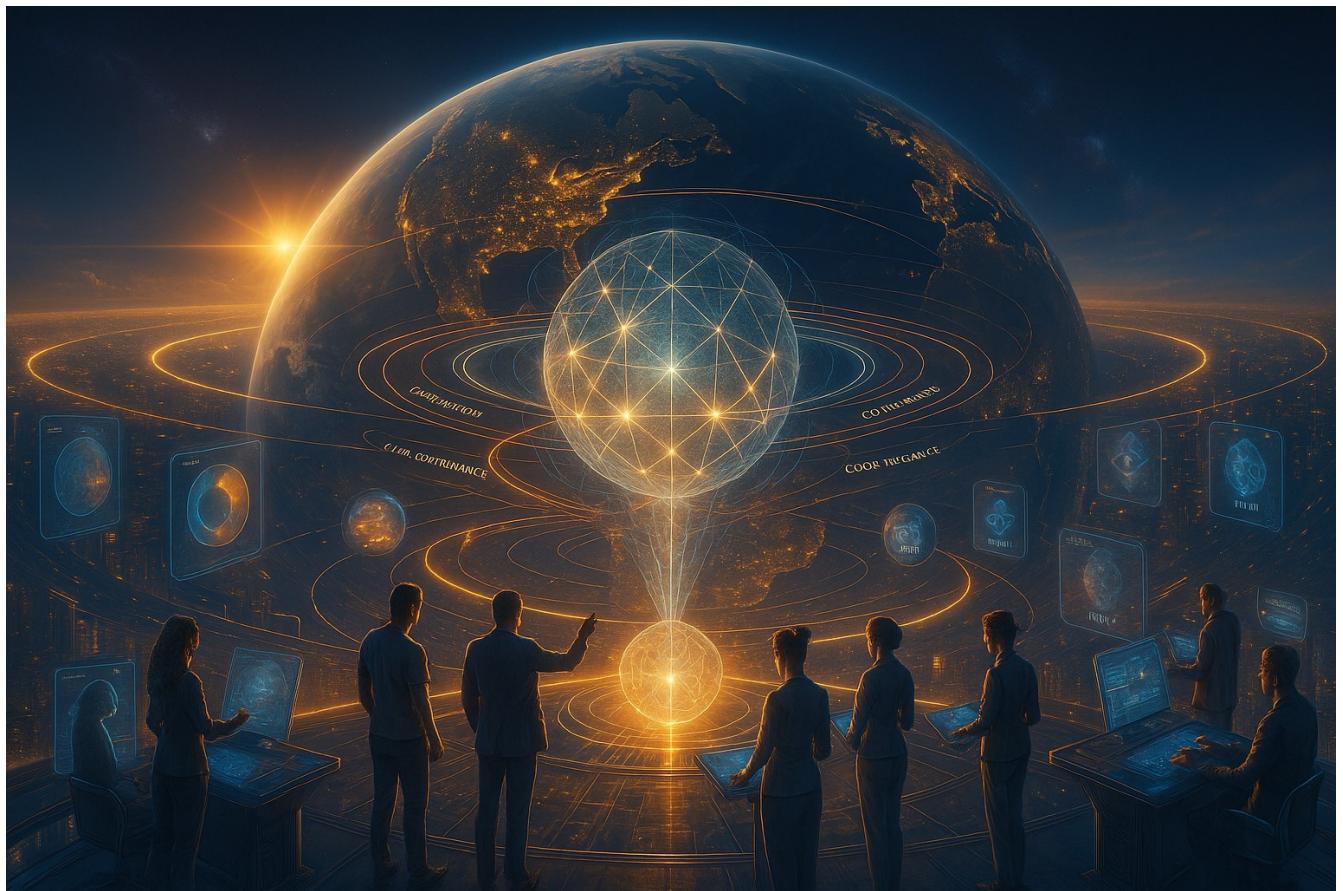
Rendering Pipeline

Color Transform

Color Transform

ACCURATE. CONSISTENT. FUTURE-PROOF.

PHASE III — CINEMATIC & IMMERSIVE PRODUCTION (Months 7–9)


Theme: *Cinematic Lighting · VFX · Simulation · Web Systems · XR Spatial Computing*

Module Code	Module Title	Hours / Credits	Assessment	Pipeline Integration	Description (Summary)
CIE3001	Advanced 3D Modeling & Rigging	60 hrs / 4 cr	Rigged Character/Asset	Asset → Animation → Simulation	Students create production-ready models & rigs; integrate AI textures, sculpting, retopology, and rigging workflows.
CIE3002	Lighting, Rendering & ACES/OCIO Workflow	60 hrs / 4 cr	Lighting/ Rendering Sequence	Stages 4–5 – Lighting + Rendering	Cinematic lighting, ACEScg workflow, volumetrics, render optimization, and AI-enhanced rendering.
CIE3003	AI-Driven VFX & Simulation	60 hrs / 4 cr	Final VFX Shot	Stages 6–7 – Compositing + Color	Students create VFX shots using particle simulation combined with AI roto, inpainting, depth-based relighting, and compositing.
CIE3004	Studio Simulation II (Short Film)	90 hrs / 6 cr	Cinematic Short Film	Full Cinematic Pipeline (4–7)	Team-based cinematic short film production using full GCGPS pipeline: animation, lighting, rendering, ACES grading, VFX.
CIE3005	Web Applications for Media (Django)	60 hrs / 4 cr	Web App + Documentation	Stage 8 – Delivery Tools	Backend development for creative tools: asset management dashboards, metadata systems, and AI APIs.
CIE3006	Advanced XR Production & Spatial Computing	60 hrs / 4 cr	XR Showcase	Stage 8 – XR Delivery	Builds complex XR experiences with spatial UX, multi-scene design, real-time optimization, gesture systems, and AI integration.

Pipeline Stages Covered:

- ✓ Stage 4 – Lighting
- ✓ Stage 5 – Rendering
- ✓ Stage 6 – Compositing
- ✓ Stage 7 – Grading
- ✓ Stage 8 – Editorial / Output

PHASE III — CINEMATIC & IMMERSIVE PRODUCTION (Months 7–9)

Theme: VFX · XR · ACES/OCIO · Cinematic Rendering · AI-Driven Simulation · Web Integration

Phase III represents the **most technically intensive** portion of the CIDF program, where students shift from **applied prototyping** to **full cinematic and immersive media production**.

If Phase I builds foundations
and Phase II builds applied skills,
then **Phase III builds mastery**.

This is where students begin to think, operate, and produce like **AI-empowered CG artists, technical directors, XR creators, and pipeline engineers**.

★ MODULE-BY-MODULE EXPANDED EXPLANATION

CIE3001 – Advanced 3D Modeling & Rigging

Hours: 60

Credits: 4

Assessment: Character or Asset Rig

Pipeline Role: Asset → Animation → Simulation handoff

✓ What This Module Teaches

Students learn how to create *production-ready* 3D assets:

- Advanced polygonal modeling
- Sculpting workflows
- Retopology
- UV unwrapping
- Shader setup
- Rigging (characters, creatures, mechanical assets)

- Weight painting
- Animation controller logic
- Asset packaging for pipelines

AI-assisted workflows are introduced:

- AI texture generation
- AI reference-based model refinements
- AI-driven character design (LoRA + ControlNet)

✓ Why This Matters

This module enables learners to produce **studio-level assets** that can be animated, lit, rendered, and used in XR or games.

It bridges **traditional CG** with **AI-driven ideation**.

CIE3002 – Lighting, Rendering & ACES/OCIO Workflow

Hours: 60

Credits: 4

Assessment: Fully rendered sequence

Pipeline Role: *Stage 4–5: Lighting & Rendering (ACEScg)*

✓ What This Module Teaches

This is the **pipeline heart** of Phase III.

Students master:

Lighting Techniques

- Three-point lighting
- HDRI lighting
- Cinematic lighting
- Stylized lighting
- Volumetric lighting
- Color storytelling

Rendering Workflows

- Path tracing
- Eevee/GPU workflows
- Render optimization
- Sampling strategies
- AOVs and render passes

ACES/OCIO Pipeline Integration

- Using ACEScg as a working space
- IDT/ODT transforms
- Color grading consistency
- Gamut mapping
- Cross-software color control

AI-Assisted Rendering

- AI denoise
- AI super-resolution
- AI relighting (depth + ControlNet normal)
- Post-render AI enhancement (SDXL / FLUX)

Why This Matters

This module prepares students to work in:

- Professional CG/VFX studios
- Virtual production environments
- XR rendering pipelines
- GCGPS-compliant workflows

It elevates students to **cinematic-level production capability**.

CIE3003 – AI-Driven VFX & Simulation

Hours: 60

Credits: 4

Assessment: VFX Shot

Pipeline Role: *Stage 6: Compositing + AI-driven effects*

✓ What This Module Teaches

Students learn the fundamentals of VFX production with a hybrid AI approach:

Traditional Simulation

- Particle systems
- Smoke / fire simulations
- Fluid / cloth dynamics
- Destruction VFX
- Physics-based effects

AI-Driven Simulation & VFX

- AI roto (automatic masking)
- AI clean plates
- AI inpainting
- AI face replacement
- ControlNet depth-based relighting
- AI-based motion interpolation
- AI-generated environment plates

Compositing

- Layer blending
- Using render passes
- Color matching
- Camera tracking fundamentals
- ACES-compliant comp workflow

✓ Why This Matters

Modern production increasingly blends:

- Physical simulation
- AI-assisted enhancement
- Compositing-driven storytelling

This module enables students to produce **cinematic-quality VFX shots** aligned with the GCGPS pipeline.

CIE3004 – Studio Simulation II (Short Film)

Hours: 90

Credits: 6

Assessment: Short cinematic film

Pipeline Role: *Stages 4–7: Lighting → Rendering → Compositing → Color Grading*

This is the most important project before the final capstone.

✓ What Students Do

- Form multi-role teams (Director, TD, Lighting, Animator, AI Artist, etc.)
- Develop a concept using AI tools
- Produce storyboards and animatics
- Generate assets through AI + modeling
- Animate key scenes
- Perform lighting, rendering, and compositing
- Complete ACES color grading
- Deliver a full cinematic sequence

✓ Pipeline Requirements

Students must:

- Use ACES/OCIO
- Provide metadata logs
- Use ComfyUI for specific tasks
- Document AIA compliance
- Follow PPS-scheduled milestones
- Produce a reproducible pipeline archive

✓ Why This Matters

This is their **first real “studio experience”** with:

- Deadlines

- Quality standards
- Team responsibilities
- Pipeline rules

It is their **first major cinematic portfolio piece**.

CIE3005 – Web Applications for Media (Django Framework)

Hours: 60

Credits: 4

Assessment: Web app + documentation

Pipeline Role: *Stage 8: Delivery + Tools Integration*

✓ What This Module Teaches

Students learn:

- Backend logic
- Django models and views
- User authentication and dashboards
- REST APIs
- Database integration
- Media upload systems
- Production asset browsers
- Metadata search and tagging
- Basic DevOps
- Integration with AI models through API endpoints

✓ Why This Matters

Pipeline tooling increasingly requires custom web dashboards for:

- Asset versioning
- Studio collaboration
- QC/AIA reporting
- XR/AI content deployment

This module trains **creative technologists** and future **pipeline TDs**.

CIE3006 – Advanced XR Production & Spatial Computing

Hours: 60

Credits: 4

Assessment: Interactive XR Showcase

Pipeline Role: *Stage 8 Delivery — XR Publishing & Immersive Outputs*

✓ What This Module Teaches

Students advance beyond fundamentals into:

- Spatial UX
- Multi-scene XR interaction design
- Gesture-based control
- Haptic considerations
- Real-time lighting for XR
- Shader optimization
- Navigation and world scaling
- AI-enabled XR asset pipelines

✓ Why This Matters

Spatial computing is quickly becoming:

- A new industry standard
- A core part of cultural exhibitions
- Essential for tourism, education, and real estate
- Used extensively in entertainment and design

Students build a **fully interactive XR experience** ready for demonstrations, portfolios, and industry engagement.

PIPELINE STAGES COVERED IN PHASE III

Phase III is deeply integrated into the heart of the GCGPS pipeline:

✓ Stage 4 – Lighting

CIE3002 (ACES/OCIO workflow)

✓ Stage 5 – Rendering

CIE3002 (Cinematic rendering techniques)

✓ Stage 6 – Compositing & VFX

CIE3003 (AI-driven VFX workflows)

✓ Stage 7 – Color Grading

ACES ODTs, LUTs, exposure logic

✓ Stage 8 – Delivery

XR publishing + Django web apps

Phase III transforms students into fully capable **AI+CG creators**, trained in a pipeline recognized across global studios.

WHAT PHASE III ACHIEVES

Phase III elevates students from applied creators to **cinematic digital producers** who can:

- Produce professional VFX
- Operate ACES/OCIO pipelines
- Use AI and traditional workflows in harmony
- Deploy XR applications
- Develop web-based production tools
- Deliver complete cinematic short films
- Work in structured multi-disciplinary teams

At the end of Phase III, students possess **studio-ready production capability**, preparing them for the final **Phase IV – Capstone & Industry Immersion**.

PHASE III — CINEMATIC & IMMERSIVE PRODUCTION (Months 7–9)

Theme: *Cinematic Lighting · VFX · Simulation · Web Systems · XR Spatial Computing*

Module Code	Module Title	Hours / Credits	Assessment	Pipeline Integration	Description (Summary)
CIE4001	Creative Studio Capstone	180 hrs / 8 cr	Final Transmedia Project	Full GCGPS Pipeline (1–10)	Students create a full-scale transmedia project combining AI, 3D, VFX, XR, and interactive systems under real pipeline constraints.
CIE4002	Professional Practice & Entrepreneurship	45 hrs / 3 cr	Portfolio + Business Pitch	Industry Readiness	Covers creative industry economics, pitching, budgeting, studio operations, and portfolio building.
CIE4003	Internship / Industry Co-Production	(Flexible) / 2 cr	Internship Report	Real Studio Workflow	Students work with DECT / IAICC studios, production houses, XR labs, or creative-tech companies.
CIE4004	GCGPS Certification Exam	— / 2 cr	External Certification Exam	Mastery of ACES/OCIO, AIA, PPS	Students complete GCGPS v1.0 certification: color science, AI workflows, metadata, governance, and reproducibility.

Pipeline Stages Covered:

- ✓ Stage 9 – Delivery
- ✓ Stage 10 – Archive
- ✓ AIA/PPS mastery
- ✓ GCGPS Certification

PHASE IV — CAPSTONE & INDUSTRY IMMERSION (Months 10–12)

Theme: *Professional Production · Transmedia Integration · Industry Practice · Certification · Career Launch*

Phase IV represents the **culmination** of the CIDF program — the transition from structured training into **independent professional practice**.

Students now apply everything learned in Phases I–III (AI literacy, 3D, VFX, XR, pipelines, Python, design thinking) to execute a **full-scale transmedia production** that meets industry standards and aligns with the GCGPS AI+CG Pipeline v1.0.

This is the phase where students demonstrate:

- Creative maturity
- Technical mastery
- Pipeline discipline
- Team collaboration
- Professional accountability
- Industry readiness

MODULE-BY-MODULE EXPANDED EXPLANATION

CIE4001 – Creative Studio Capstone

Hours: 180

Credits: 8

Assessment: Final Transmedia Project

Pipeline Role: *Full GCGPS Pipeline (Stages 1–10)*

✓ What This Module Teaches

This module is the core of Phase IV and the **signature of the CIDF program**.

Students form production teams and must create a **major transmedia project**, which may include:

- A short cinematic film
- An immersive XR narrative
- A hybrid AI–CG animated sequence
- A real-time experience/game prototype
- A mixed-media project integrating AI, VFX, XR, and interactive systems

✓ Deliverables

Students must deliver:

- Concept + AI-driven ideation
- Storyboards + previs
- 3D assets + AI-enhanced textures
- Rigging + animation
- Lighting + rendering (ACEScg)
- VFX + compositing
- XR or web deployment (optional, based on project type)
- Color grading (ACES/OCIO compliant)
- Pipeline documentation + reproducibility
- AIA compliance checklist
- PPS milestone schedules
- Final presentation to faculty + industry panel

✓ Why This Matters

This module simulates a **real studio production**:

- Students adopt production roles
- They collaborate using pipeline governance
- They learn accountability, leadership, and creative negotiation
- They produce a *portfolio masterpiece*

This capstone is designed to be industry-presentable and often leads to internships, job offers, or project incubation.

CIE4002 – Professional Practice & Entrepreneurship

Hours: 45

Credits: 3

Assessment: Business Pitch + Professional Portfolio

Pipeline Role: *Industry readiness & soft-skills integration*

✓ What This Module Teaches

Students learn how the digital creative industries operate across:

- AI
- Games
- Animation
- XR
- Film
- Transmedia
- Web 3.0 / Creative Tech

They study:

- Production budgeting
- Market analysis
- Entrepreneurship
- IP creation & licensing
- Studio operations
- Project management
- Pitch decks & investor communication

They must create:

- A professional portfolio website
- A CV tailored to creative-tech roles
- A business/project pitch
- A personal value proposition in the Creative Intelligence Economy

✓ Why This Matters

Creative graduates must know how to:

- Sell ideas
- Communicate professionally
- Navigate global industry requirements
- Understand the economics of production
- Develop personal branding
- Pitch to studios, incubators, and clients

This is the bridge between **education** and **industry**.

CIE4003 – Internship / Industry Co-Production

Hours: —

Credits: 2

Assessment: Internship Report + Supervisor Evaluation

Pipeline Role: *Real production environment · cross-studio practice*

✓ What This Module Teaches

Students complete an **industry internship** or **co-production project** with:

- DECT Global
- IAICC member studios
- Digital agencies
- Game companies
- XR/VR studios
- Cultural institutions
- Creative-tech startups

The internship gives students:

- Real studio workflows
- Client-facing interactions
- Time management experience
- Exposure to production pressure

- Team integration skills

✓ Why This Matters

This module is essential for:

- Building confidence
- Establishing industry contacts
- Transitioning into employment
- Understanding real production culture

CIE4004 – GCGPS Certification Exam

Hours: —

Credits: 2

Assessment: External GCGPS Certification + Practical Exam

Pipeline Role: *Mastery of ACES/OCIO, AI tools, AIA, PPS, workflow reproducibility*

✓ What This Module Teaches

Students must pass the **GCGPS AI+CG Pipeline Certification Exam**, which tests mastery in:

🎯 Core Competencies

- ACES/OCIO color science
- AI production workflows (ComfyUI, ControlNet, LoRA)
- 3D/VFX pipeline integration
- XR delivery
- AIA governance
- PPS milestone management
- Metadata tagging and reproducible workflows

✓ Why This Matters

This certification:

- Validates students are **studio-ready**
- Ensures they understand **professional production standards**
- Confirms their ability to work in **multi-studio, global pipelines**

- Serves as a recognized credential across DECT Global, IAICC, and partner institutions

Students graduate not only with a diploma — but with a **global production certification**.

PIPELINE STAGES COVERED IN PHASE IV

Phase IV covers the **complete GCGPS pipeline**, including:

✓ Stage 1 — Story/Concept/Previs

AI-driven ideation, storyboards, previs animation.

✓ Stage 2 — Asset Development

Modeling, AI-assisted textures, rigging.

✓ Stage 3 — Layout & Animation

Camera work, blocking, motion design.

✓ Stage 4 — Lighting

ACEScg-based real-world lighting setups.

✓ Stage 5 — Rendering

Cinematic rendering pipelines.

✓ Stage 6 — VFX & Compositing

Hybrid AI + traditional workflows.

✓ Stage 7 — Color Grading

ACES/OCIO ODT delivery.

✓ Stage 8 — Publication

XR or web deployment (optional).

✓ Stage 9 — QC & Governance

AIA compliance + PPS milestone reporting.

✓ Stage 10 — Archival & Delivery

Pipeline reproducibility, metadata logs, project packaging.

WHAT PHASE IV ACHIEVES

Phase IV ensures students graduate as:

✓ Independent creators

Able to produce full transmedia experiences.

✓ Pipeline-fluent professionals

Able to operate the full GCGPS AI+CG workflow.

✓ Industry-ready talent

With an internship and a certified skill set.

✓ Portfolio-strong applicants

Holding 3–4 professional portfolio pieces.

✓ Creative technologists

With hybrid skills spanning AI, CG, XR, and web.

✓ Certified practitioners

Recognized by DECT Global and IAICC.

✓ Future-proof innovators

Prepared for new roles emerging in the Creative Intelligence Economy (CIE).